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Quasiclassical and exact quantization of simple two-level 
model systems 

S P Karkach 
Institute of Che&cal Physics, 147.432. Chernogolovka, Moscow, Russia 

Received 22 December 1992, in h a l  form 8 July 1993 

Abstract. The LaplaCe method is considered in application to one-dimensional two-state 
eigenvalue problems in the example of simple models, including that of coupled parabolic 
terms and radial oscillators with quadratic. linear and constant coupling (basic models of 
ReMer. pseudo-Jahn-Teller effects etc.). In all cases, the solution can be presented either 
as a two-state analogue of the Bohr-Sommerfeld quasiclassical quantization rule, or in 
more general form. Compared with the semiclassical picture of inelastic collisions in the 
momentum-space representation, the contour of integration of ’trajectory equations’ for 
the case OF bound states is finite, and any desired degree of accuracy can easily be 
achieved. Because no convergence problems arise, the need to compute the equation 
possessing ‘physical sense’ (e.g. for adiabatic amplitudes) is circumvented, suggesting that 
the merhod would be applicable also to complicated potentials and to many-state 
problems. Numerical tests for the energy level positions and calculations of eigenhnctions 
are presented; practical applications and generalizations are outlined. 

1. Introduction 

The role which nuclear motion plays in the coupling of electronic states, and various 
manifestations of this coupling, excite permanent interest. In this paper, we are 
primarily interested in the effects of vibronic coupling on the details of the vibrational 
structure in electronic absorption and emission spectra. Consideration of simple 
models gives a good basis for understanding the problem. The models usually used 
are, in general, of two categories. The first assume the electrons to follow the nuclei 
adiabatically [l, 21. Because the electronic functions become dependent on nuclear 
coordinates, the nuclear motion results in so-called non-adiabatic coupling, which 
becomes stronger the faster the nuclei move. The second use a set of electronic 
wavefunctions for some k e d  nuclear configuration as a basis [3,4]. All quantities in 
the coupled equations which result from allowing nuclei to move are expended in a 
power series about this k e d  configuration. Typically, only the lower-order terms are 
retained, those presumed to give a reasonable approximation to potential curves and 
coupling terms. 

Some interesting models belonging to the first category can be found in the 
literature [5 ,6 ] ,  but those of the second type are seemingly simpler for theoretical 
treatment and practical use. In this and previous papers [7-91, we also deal with 
models having two diabatic potentials and some coupling function as a starting point. 
Analytical methods, usually in quasiclassical approximation, result, for the eigenvalue 
problem in coupled potentials, in rather simple quantization formulae. They have 
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clear physical meaning and replace, for this case, the Bohr-Sommerfeld quantization 
rule. In [9], on the basis of experimental vibronic levels and by use of quasiclassical 
quantization conditions, the diabatic description of the valence-Rydberg states of 
diatomics was suggested. The method proves very convenient practically, and rather 
accurate, i.e. the method is accurate when experimental data are abundant (the 
simultaneous fit to 70 vibronic levels of four isotopic species of dhydrides [lo-141 
enables one to reproduce the ab initio EF adiabatic double-minimum potential [U, 11- 
121 very well). Unfortunately, the results for the b’c‘-states of the nitrogen molecule 
[16-171 were less impressive. It was appreciated, later, that the use of a more precise 
quantization function in the least squares fitting procedure would result in appreciable 
improvement of the method. 

In attempts to improve the two-state quantization formulae (section 2), our 
attention was first attracted to the fact that some intermediate quasiclassical quantiz- 
ation forms in the high energy region are actually exact, not asymptotic. It can be 
shown for all models under consideration, i.e. that of two parabolic electronic 
potentials with equal kequencies and constant coupling (section 3), and a family of 
three problems having as particular cases the simplified ReMer and Jahn-Teller 
models (section 4). The important point is that in all cases the system of two second- 
order differential equations describing the model wn be reduced, by taking the 
Laplace transformation, to a pair of coupled first-order differential equations. 

Some of our first-order equations (e.g. for diabatic and adiabatic amplitudes, and 
provided the independent variable is chosen in some special way) may be considered 
as the trajectory time-dependent equations. Compared with exact [18-191 and 
approximate [20-21] trajectory equations in the momentum-space representation, 
the Laplace transforms describe motion rather in the phase space. Certainly, the 
model of the linear terms with constant coupling [18] (inelastic two-channel scatter- 
ing) and the linear Jahn-Teller model 1191 (resonance elastic scattering) are special 
cases of equation (5) (o=O, k > l )  and equation (29) (h=1/2, E + = E - = E ,  
o+ =U- = 0) of this paper, but many other ‘exactly solvable’ models of scattering are 
also possible (cf equation (29) with imaginary frequencies). The contours of integ- 
ration of the Laplace transforms lie, in general, in the complex plane, but no special 
complications, compared with the integration of the trajectory equations along the 
real axis in momemtum space [20-23], arise. In scattering problems (elastic or 
inelastic), all difficulties originate from the infiniteness of motion in the mean 
adiabatic term. The integrations should be performed, strictly speaking, over infinite 
limits. Because this is impossible, the precision of numerical calculations is limited. 
Simplifications are achieved only for the case of bound states. Due to finite and 
strongly defined limits of integration, calculations can be highly accurate. Most 
important, no convergence problem arises, and computations can be performed with 
any convenient and single-valued in the complex plane equations, not necessarilly 
possessing ‘physical sense’ (sections 3,5). 

The models of coupled oscillators with equal frequencies, equation (5). and the 
special case of the pseudo-Jahn-Teller model, A=* and U+ =o- in equation (29), 
can also be treated by use of Bargmann’s method 124,251 (i.e. in the coherent states 
representation [26]). The resulting system of linear first-order differential equations of 
[24,25] can be successfully integrated along the conjectured contour (section S), and 
the quantization condition for vibronic levels can also be written (it replaces the 
requirement for eigenfunctions to belong to the space of entire functions in 
Bargmann’s approach). In general, the Laplace method seems easily applicable to 
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various models. Besides that, a very simple expression for eigenfunctions in the 
coordinate representation is available in its frames. 

In section 5 the results of numerical tests are presented. In section 6 some details 
of practical applications of our approach are considered, and possible generalizations 
are mentioned. 

2. Two-level quasiclassical quantization 

In order to obtain a complete idea of the subject of the paper, let us look at the 
quasiclassical formnlae available at present for describing the two-state quantization 
problem. Hereafter, denote the actions in the lower and upper adiabatic 
potentials (a1>&), and 9 has the meaning of the transition probability between 
adiabatic terms. The ‘tunneling’ action 9, if not stated, correlates at high energies 
with the Landau-Zener factor. 

The quantization form 
cos(Se, + &) + (1 - 9 ) I ’ Z  cos(&, - & - q) = 0 (1) 

where 9’-exp(-29) and q is the non-adiabatic (Landau-Zener) phase, was fust 
announced [7] as characteristic of rather high levels (d,>>l, Sa,>O or &-0) of the 
simplest Jahn-Teller vibronic problem (cf (29) of this paper with A=+, E+ = E- and 
o+ =CO-). The limiting cases of (1) are the usual Bohr-Sommerfeld conditions of 
quantization in the separate, cos Se, cos Sa, = 0 (when no non-adiabatic transitions 
OCCUI and 9 = q = 0), and united, cos(Se, + Sa,) = 0 (9 = 1) adiabatic potential wells. 
Equation (1) reproduces the high numerical energy levels of [27-301 very well [7], but 
near and below the bottom of the upper adiabatic term, Se2s0, especially at not :oo 
large 9, the precision of (1) is reasonable only (typically within a few per cent). 

Next. the well-founded expression 

(1-9)cos(d,+q)cos(Se2-~)+9cosd+cosd~=0 (2) 
where Se+ and Se- are the actions in diabatic potentials, is characteristic of quantiza- 
tion in the high-energy region ( 6 3 0 )  [S-91 in systems of two coupled diabatic terms 
involving crossing. As limiting cases, it has quantiztion in adiabatic, cos 4, cos & = O  
(9 = q = 0), and diabatic, cos Se+ cos Se- = 0 (9 = l), potentials. 

In [9] the quasiclassical treatment of some two-state models was extended to the 
situations where the lower adiabatic potential becomes double-well. At energies 
below the bottom of the upper adiabatic term, it was found that the quantization 
condition could be presented as the product of two terms: 

cos(Se’+Se”-y)+%8”~cos(d’-Se”)=o ( 3 4  
describing the quantization in the double-minimum potential (here Se‘ and Se“ are two 
complementary parts of the action Se, in the lower double-well adiabatic potential, % 
is the reflection probability related to the potential hump, and 1/, is the corresponding 
phase correction; due to pre-exponential corrections in 3 [9], equation (3n) describes 
well both weak and stong coupling l i i ts) ,  and 

cos(& + y) - ? P = 0  (3b) 
defines the so-called false spectrum [31]. (The conditions (1) and (2) also possess a 
false spectrum. At energies below the bottom of the upper adiabatic term and in the 
weak coupling limit, it is cosSa,+0(9)=0, Sa,<O.) 
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The quantization formulae (2)-(3) are very convenient for use in the least squares 
fitting procedure [9], but the quantization forms (2) and (3) do not fit each other 
exactly in a common region of applicability, i.e. in the energy gap between adiabatic 
terms. Unfortunately, further essential progress seems impossible in this 'quasiclassi- 
cal' way. Besides restricted precision, the results which can be obtained for the more 
realistic models discussed in section 4 are either coincident with those for parabolic 
terms or would have doubtful practical value because of mismatches between various 
limiting cases. 

For purposes of the present paper, let us consider the findings from another point 
of view. First, equation (1) and (2) are special cases of the more universal and 
straightforward quantization form 

Q = cos(d1 + &) +mod Tll cos(& - Se, - arg T,I) = 0 (4) 

where the matrix T (obeying the system of trajectory equations) describes transitions 
between adiabatic terms. The only difference between the expressions (1) and (2) is in 
the character of the model used. Namely, these expressions appear when the non- 
adiabatic transitions take place once or twice during one period of classical motion, 
respectively. (For the relationship between 9, q, and the T-matrix in the case of 
equation (2) compare with (5.8) of [8].) Second, equation (4) itself is exact for all 
models under consideration, in spite of the fact that the actions Se1,2 entering it are 
quasiclassical. In this way, the precision of (4) depends only on the precision of the 
calculation of the T-matrix. All previously used T-matrices [8,9] were asymptotic in 
the main large parameter of the quasiclassical treatment of bound states, Se= 
d,-&>>l. (That is, the T-matrix used was just the transition matrix [31] for the 
corresponding resonance or inelastic scattering problem Se,= m ; in the latter case the 
T-matrix turns out also to be the scattering matrix [23,31], which is some special case 
of the transition matrix.) As a result, some error is introduced in the quantization 
conditions. This error becomes smaller as the difference % becomes larger. (Under 
favorable conditions, %=50-100, the quantization formulae (2) and (3) guarantee a 
residual mean-square deviation of about 1% of the smaller frequency [9].) In the 
presently proposed numerical approach, due to restricted dl -4, the equations 
describing the T-matrix can easily be resolved to any desired degree of accuracy. 

It should be stressed here that the numerical T-matrix, in contrast to its asymptotic 
form, is not defined unambiguously. All possible pairs of (modT,,, argTll) satis- 
fying (4) can be obtained in calculations by use of different contours and equations 
(section 5). 

3. Basic model and exact quantization 

The simplest problem, and most elaborated quasiclassically, is the quantization 
problem of two coupled parabolic potentials with equal frequencies [8,9] 

were1=(FlF2)2/4hpw3 (F,,,aretheforcesat thecrossingpointx=O, &=O) is themain 
large parameter of quasiclassical treatment, approximately equal to the difference of 
the quantum numbers AN= (d, - &/n, where dlS2 are the adiabatic actions, the 
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energy E and the coupling constant v are given in units lhw, x in (lhlpw)l'z and the 
reduced mean force k=(F,+FJI(Fl-F2).  

This model should be considered as four-parametric. Including the full energy, 
there are four parameters (and four independent actions) which give the full 
description of the T-matrix in (4). 

Problem (5) has a solution [SI 

where the functions G1,2 obey the coupled first-order differential equations 
( d , o u + l z + l 1 2  U ) G=O 

(7) 
d,(dldq) + IE + 112 

d1,2=q - ( k i  1) E =q212+ E 

and the contour r is chosen such that the increments of the out-of-integral terms along 
the contour are zero: 

K G .  exp(lq~)1~=0 n = 1 , 2 .  (8) 
In particular, this condition is satisfied when the contour begins and ends at q = f m 

[8], but the four independent solutions (6) of such a kind rise exponentially either at 
x+ - 00 or at x+ + m at any energy and cannot describe the bound states. A good 
prompt for the contours is the locus of the saddle points in (6) in the classically 
accessible regions (the phase curves) 

are quasiclassical adiabatic impulses. The phase curves (9) are closed, but in other 
coordinate systems (as defined below by relations (11)) they are periodic only. 

The first-order equations we will deal with, for the auxiliary function C (the 
column of C,, C J ,  defined by 

where 

s1,z= (dl,*)1/2 Q = (q - k)E/s2 
s=(d1dy=((q-k)2-  1)"2 

and after introducing the time-like variable t 
s(d1dq) = dldz 

4 - k=cosh t 
so that 

ands= sinh z 

become in the most simple Landau-Zener form 

where x= d s .  
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Previously [8, 91, this equation was treated by various approximate analytical 
methods. It was also shown [8] how the quasiclassical quantization arises from the 
conditions (8). Now we have attempted to consider this and similar quantization 
problems exactly, combining analytical and numerical approaches. As a preliminary, 
let us specify transformation to the adiabatic basis in (12) as 

where 

tan ,!I= ulx, e' =exp(+lJ Q dq) = exp(+IJ 0 dr) (14) 
Q = (2+ D ~ ) " ~ / S  is the adiabatic potential in 'q-representation', and e= Qs, s dr=dq 
(cf equation (11)). The adiabatic amplitudes obey the equation 

Here p' = d p l d z ,  z signifies q or t. - 
Let also 

eo= e x p ( 4  J Q dq) = exp(-lJ 6 dz)  e= QS. (16) 
The conditions (8) in the notation introduced become 

{(d1)"' exp(lqx)eO(al cos Be- - 6 sin fie')}r= 0 

{(d2)"zexp(lqx)e0(ul sinpe-+a2cos Be+)X=O. 
(17) 

Let us specify some matrix T describiog changes in coefficients ul,' along the 
contour r (the initial and h a l  points are chosen through one period of classical 
motion and, particularly, are coincident in the q-plane): 

Note that each column of the T-matrix and the matrix in total obey (15). That is, each 
equation in the form 

a' +Mu = 0 (194 
where U is the column of two coefficients and M is some 2 x 2  matrix, denotes 
simultaneously the equation 

T'+MT=O (W 
for the T-matrix, assuming T = l  at the initial point of the contour. It is fully 
equivalent to two integrations of (19u) described by the following scheme 

The use of (196) instead of (19u) is justified because the T-matrix always possesses 
some useful properties. Typical are 

det T = l  (20) 
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resulting, provided Tr M = O ,  from T= 1 at the initial point, and the 'reversibility in 
time' property [SI 

(21) T* = T-' 

which enables one to halve the interval of integration. 
The quantization condition is really the condition of resolvability of the system of 

linear algebraic equations (17). In terms of the T-matrix and bearing in mind that for 
the case where the factors (dl,z)l" change sign upon circumventing the contour r, but 
exp(lqx), cosg and sing return to initial values, this condition becomes' 

det T+ e:(Ttle; + rue;) + (e:)'= 0. (22) 
In contrast to definitions (14) and (16), e$' include definite integrals along the 
contour. Because the conditions (20) and (21) are fulfilled, we come to the quantiza- 
tion form (4) with 

The last equality in (23) is exact, because the impulses p, . ,  are taken in the 
quasiclassical form in accordance with expression (9) for the saddle points. In such a 
way, the quantization condition (4) turns out to be exact for the model ( 5 )  provided 
the elements of the T-matrix are found exactly. 

Consider now the modifications needed if the Landau-Zener-like system (12) of 
lirst-order equations is not available (this is so for some of the models of section 4), 
the second-order equation only. The latter for the C, function can be written as 

dZ (z- 1282- l X ' )  c,=o 

where e'= 2 + U' and x' = dX/dz. If we look for a solution in the form 

CZ=8-"2[blexp (-lJ8dr)+b2exp (1JOdr)l 

we obtain the equations 

(The redefinition bl=a,B'"sing, b2=az8"Zcosg, with j3 from (14), which would 
retum us to (lS), is impossible in the general case of non-canstant U). 

In terms of the coefficients bl,, we have 

with the diagonal matrix D from (13). Introducing the alternative T-matrix which, like 
(IQ, describes changes in the coefficients bl,, along the contour I' (and, according to 
the above, obeys equation (2S)), one can again obtain a quantization condition in the 

'It is necessary in this mnsideration that the contour r is either coincident with the phase curve or 
equivalent to it, i.e. circumvents the singularities of (19, including the branching points of the adiabatic 
potential, in just the same manner and has the initial and final points coincident in the q-plane. 
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form (4), but with the elements of the 2=-matrix. Naturally, this condition will describe 
just the same energy levels. Mathematically it is due to the similarity transformation 
(equations (13) and (26) were used) 

which conserves the trace of the product D,T entering equation (22): 

Tr(D,T)=2 mod T,,cos(d,-d,-arg TI,) 

= Tr(D,T) = 2 mod TI, cos(d, -&- arg T,J. 
In such a way, equation (25) and (15) (provided the Landau-Zener-like form (12) is 
available) lead to different T-matrices, F#T, even on the same contour. 

The most natural and analytical contour for computing the T-matrix is the phase 
curve q: in the lower adiabatic term. When the lower adiabatic potential is single-well, 
this contour exists at all energies of physical interest. Unfortunately, this contour falls 
into two parts when the lower adiabarjc potential becomes double-minimum, the 
energy being below the potential hump, and this is really the only parameter region 
where the quantization condition cannot be written in form (4). 

Further generalizations c2n be considered as follows. Because the equations for 
the T-matrix in the eigenvalue problem should be integrated over restricted limits, no 
convergence problems exist, and the need to compute the trajectory equations for 
adiabatic amplitudes is circumvented. This enables us to avoid computations with 
branching functions and remove ‘quasiclassical‘ restrictions on the contour of inte- 
gration. As a result, the quantization function Q can be extended over the whole 
parameter region. These generalizations lead to significant simplifications of the 
method, suggesting that it may also be applicable to more complicated problems. For 
the example of the basic model, one can define a matrix describing, as (18), the 
changes in the column of functions G in (7) upon circumscribing the contour, 
G,,=TG,,. The system of linear differential equations G’+MG=O (and 
T’+MT=O, T = l  initially), can easily be integrated numerically along the finite 
contour. The quantization condition becomes, in most general form 

Q,=detT+ l-TrT=O. (274 
For thecase of equation (7) TrMfO, and det T=exp(Zi(d,f&))#l. The complex 
quantization function Qc= Q exp(i(d,+dJ) is less convenient than the real one in a 
search for the energy levels, but computations of eigenfunctions are simplied, 
because (6) can be formulated directly in terms of the corresponding T-matrix (section 
5). In order to have the quantization function in a real form, one must obtain (196) 
with TrM=O. Besides (15) and (25) leading to (4), it may be an equation in the 
Landau-Zener form (12), but in general such a matrix M turns out to be asymmetric. 
The following real forms were also met in our calculations: 

Q = cos(dl + 4) -Tr T/2 = 0 

Q = ~ ~ ( d p ,  + 4) - (T12- T&2=0 

(276) 

(274 

when T* = T-’ and, as a consequence, T,, = T*y, and sometimes 

provided the T-matrix satisfies some symmehy property (distinctive from the reversibility 
in time), so that T2, = -T;. 
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For all models under consideration, the sum of adiabatic actions in (4) and (27b, c) 
is equal to the sum of diabatic actions: 

In turn, the latter can always be expressed through the full energy and the parameters 
of diabatic potentials. In particular, for the model (5)  it is d+ +& =n(E, +&), 
where E l , 2 = I q 2  are the energies with respect to the bottom of the diabatic terms. 

4. Other models 

The three models available can be represented in the most obvious form of coupled 
radial oscillators by the equations (h =p = 1) 

wereA=O,&, o r l ,  a n d E , = E f A ,  w$=w'+A.  Amongothernumerousformsof 
this equation, that with coupled Morse-like potentials seems also of interest. 
Asusming p = exp( -x/2) we have 

where 

-(K+A)'/8,Q1,,=(w:/8) exp(-2x)-E,/4) exp(-x) 
and 

9rlz=9r2,,=(V/4) exp(-x-Ax) 

in terms of the parameters of (29). Most general applications of the models are 
associated with the form (30). Because of the three different types of coupling possible 
in the system of diabatic potentials involving possible crossing, one can choose a 
model which leads to better results. 

In applications, the models described by (29) and (30) should be considered in 
general as five-parametric. Compared to the model (S), the fifth additional indepen- 
dent parameter may be considered as arising due to the restricted number of bound 
states in Morse potentials. Some specific three-parameter cases A = 0, A =0, at A =+, 
1 are also of physical interest and widely known: they represent, respectively, the 
simplest Jahn-Teller and Renner (for linear molecules) quantization problems. In 
more general form, equation (29) may serve as a starting point for a precise 
description of non-adiabatic effects in systems exhibiting pseudo-Jahn-Teller and 
Renner splitting. In particular, the application to Renner molecules looks very 
promising. The well-tried Hamilton equations of [32] (cf equation (12), (U) and (33) 
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therein) allowing for the effects of electron spins and the non-inetgral nature of the 
orbital angular momentum, upon neglecting p4 and higher tenus, are just (29) at 
A =  1. Depending on whether the adiabatic frequencies = (a2* s ) ~ "  (where 

imaginary, equation (29) presents a simplified model of the linear, the linear in upper 
and bent in lower, and the bend in both adiabatic states molecule. In spite of our 
equation (29) describe in cases (i) and (iii) the resonance and two-channel scattering 
processes, respectively, the transition (scattering) matrix can be estimated precisely 
by means of integration over a large enough portion of the infinite contour. Then the 
matrix may be used in the usual quasiclassical way [7] to describe bound states in 
modified potentials. 

E = ( E ~ +  2 A2 ) 112 , & 0=2V) - are: (i) both real; (ii) w, is imaginary, and (iii) both are 

Assuming the definitions 

r=p2/2 y, = r(K+N/* y- = r(K-A)/2y - . (31) 

we rewrite (29) as 

2 " V r m ; r ( D Z - o ~ ) + ( K + 1 - A ) D + E -  j g j = o  D = dldr. 
r(D2-o:) +(K+ 1 + A ) D + E + ;  2"V 

( 
Looking for the solution as the integrals 

we come to the equations 

s+D-  W - A  + (1 -A)q; -2"V ( -2"V(-D)m; s - D - W + A  + (1 + A)q) (z:) = O  (33) 

where 
S+ =q2-& =SO& A sa=q2-02 W=Kq+E 

which are valid provided the increments of the out-of-integral terms along the contour 
are zero. The first of these is 

{exp(qr)s+G+Ir= 0 

but the second is 

{exp(qr)s_ G-)r = 0 A=O 
or 

{exp(qr)[s-G- +2"2VG+]}r=0 A = 112, (34) 
or 

{exp(qr)[s-G- +2V(rG+ -dG+ldq)]},=O A=1. 
System (33) is equivalent to one second-order equation for the function G+. It 

looks simpler upon introducing the new function G 

G+=GexpU(Q-(l-A)qAs-2)dq) 
where 
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s-'(Wso +AA) s2 = si- A2 when A= 0 

s-'(Wso+AA) s2=sa-.&~-A2 EO,-2V when A = 1 
e= S-~(WSO+AA-F) s2= si- A' F- V when A = 112 

and a new variable according to 

dldz=s'+" dldq. (35) 

i 
This equation is again equation (24) ( I =  1): 

(S- e2-xi ) G=O. 

Here a prime signifies differentiation with respect to z, and 

x= (WA +Aso)1s1-" (37) @ = s 2 ( 1 + A ) ~ L  2 + 

where 
A=O 

v2 = [F4-2F(Wso +AA)]ls A =  112 F= V (38) 
€;(W-AZ) A = 1  Eo-2V. 

A=O, 

I" 
We have also 

(Q2 +sT2(A2- W +  PO)'" 
(&2+s-'(A'-W 112 A=112,1. (391 Q=( )) ~ 

At A =+, 1, the coupling parameter is contained either in Q2, or in s2, 
Looking for the solution of (36) as 

G= O-'"(b,e- + b2e+) 

where 

e'=exp & Odz , (1 ) 
we come to (25) for coefficients bl,2 (and the T-matrix, remembering (19u, b)). The 
relations (34) are more complicated than (8) at A=+, 1, but the route to the 
quantization condition differs only in detail, and we come again to (4). It should be 
stressed once more that this is so until the 'phase curves' (which are the solutions of 
the~eqnations for the saddle points, r+ Q& Q=O) 

q r 2  = - KIPz+ iP1.21p (40) 
where 

PI,' = 2 ( E f  R ( p ) )  - 7 j  - o'p2 ( K 2  P >"' 
and 

R ( p )  = (I+"+ ( A  -$)')'; 
or more general (but 'quasiclassically' equivalent) hand-made contours of integration 
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P 
Ngurel. Adiabatic potential curves involving quasicrossing at E = 2 ,  A=K=A=O.S ,  
o=l,andV=O.linequation(29).ThecassA=O,~andl arevisuallyundistinguished. 

are possible (cf sections 3 and 5). 
Typical adiabatic potential curves involving quasi-crossing and described by (29) 

behave as shown in fignre 1. The corresponding zeros and poles of the adiabatic 
potentials (39) in the q-representation are shown in figure 2. Note that the left part of 
figure 2 (Sa:= 00, the two right poles are absent) corresponds to the four-parametric 
model of section 3. When the energy falls to the bottom of the upper adiabatic 
potential (i.e. the action Sa, becomes zero and then negative), the inner zeros 2 and 3 
reach the segment Lpl,pz] [SI, and all further events are moved near it [9]. 

In the Renner case A =  1, the four zeros of the adiabatic potential (39) are placed 
qualitatively as shown in fignre 2, but at small A the zeros are grouped in pairs near 

Figure2 Pattern of zeros (1-4) and poles of adiabatic potential (39) (parameters the 
same as in figure l), and anti-Stokes lines (dotted). n e  latter are labelled according to the 
four independent classical actions: the 6fth one is the tunnelling factor 3 calculated 
between the zeros 1-2 (or 3-4). The phase curves r (the locus of saddle points 4;. cf 
equation (40)) and y (that of qg reveal quasicrossings. 
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Figure 3. Typical Jahn-Teller (A=+) patterns of zeros of the potential (39) for the case of 
high (a) and uery deep @) levels. Parameters the same as for 143th and 140th levels from 
[%I, respectively, except small A=O.1 introduced to split, visually, the poles. 

q ; ’ = ~ K / E  and q-’=O. The outer pair of poles or all the poles may lie on the 
imaginary q-l-axis (resonance and two-channel scattering, respectively), then one or 
both contours r and y become infinite: Note that the full potential in (36) involves, in 
general, six zeros in the q-plane (whereas its adiabatic part only four), and the 
treatment by means of comparison equations becomes too complicated and irrelevant 
to accuracy. Practically, A = A  = 0 (2 = 0, cf figure’2) is the only parameter region 
where (36) may be considered analytically: We can expect in (1) q-0 (unfortunately, 
undefined) and 9=$ exp(-Z%), where 9 -&K3/6E2 is a specific (non-Landau- 
Zener) factor, and$= 1 should depend weakly on the actions 4 and Se; (cf [7] where 
at 9 = 0 and Se2, Se; >> 1 this result was obtained semi-c!assically, with ,U = 2): 

The specific Jahn-Teller (A =*) schemes of zeros and poles for high and very deep 
levels (see section 5) are presented in figure .3.~ The action between the zeros 1-4, 
&+nK, is not the independent value for the simplest case A = A  =O tested below. 
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5. Numericaltests 

Unfortunately, only a few energy levels (to 2-3 decimal places in units U )  are 
available in the literature [33] for the four-parameter case of coupled parabolic terms. 
These and numerous levels [34] (to 1-2 decimal places) in the special three-parametric 
case k=O of equation (5) (i.e. in the symmetric potentials) are well described by 
asymptotic formulae [8] and cannot confirm unambiguously the exact expression (4). 
To test quantization formulae (4) and (27u-c), we have used numerous data from [28] 
and [29] (most to four decimal places) and [35] (to eight decimal places) obtained in 
the three different computational ways for the simplified two- and three-dimensional 
Jahn-Teller system. The corresponding radial equations are just equations (29) with 
A=*, A=A=O, w = l ,  and the angular momentum Kim [28] or K-j+1/2 [351, 
respectively. Our parameter F =  Vis related to U and U‘ of [28] and [29], respectively, 
as u = P P  and u’=2F, and to the first-order coupling parameter D of 
Longuet-Higgins and Moffitt as D= F2/2. 

Although special estimations of actions d1,2 in (4) are not needed for the model 
problems (for the case the sum Sel+& is z ( E + K + P / 2 )  exactly and the difference 
d, - Sa, is estimated simultaneously with the integration of (25) along the analytically 
given contours), the quasi-classical picture is rather instructive. It is also very 
convenient, especially in applications, to use the actions along the finite anti-Stokes 
and Stokes lines as the independent parameters characterizing the T-matrix. For the 
two-state quantization problem, the simplest possible set of such independent 
parameters consists of two classical actions, d, and dz, and the ‘tunneling’ factor 9. 
In terms of two actions, d2 and 9, a rather general specification of the parameter 
regions can be gven ( d , > O  for all levels). We will call the vibronic levels high (4, 
9>0), low (&<O, 9>0) or deep (SS,, Ed<O). 

For the Jahn-Teller problem, some of these cases were illustrated by figure 3. In 
the case of low levels, the zeros 2 and 3 are complex conjugate and the contour A does 
not exist in the classically accessible region. For deep levels, when compared with 
figure 3(b), the contour r circumvents the poles from another ‘usual’ side. The 
quasiclassical contour r (phase curve) for uery deep levels becomes, strictly speaking, 
invalid’. Nevertheless, some hand-drawn contours (cf. footnote in section 3) leading 
to the quantization condition in the ‘quasiclassical‘ form (4) are possible. This is so 
because the outer zeros of the adiabatic potential in figures 2 and 3 are never fused in 
the case of single-well lower adiabatic potentials. 

Practically, the integrations of (25) with elements of (37) and (38) were performed 
in the 4-plane. All possible contours of integration lead to just the same energy levels, 
in spite of the fact that the T-matrices obtained may be quite unlike each other. 
Whereas the ‘middle’ anti-Stokes line (halving %factor) used as a contour (and 
possible for high and low levels only) results in the elements of the T-matrix being 
coincident qualitatively with the quasiclassical ones (of equation (l)), the contours 
along the phase curves 41; lead sometimes to very large mod TI, (more than 100 for the 
uery deep 150th and 154th levels of [28]). The symmetry of the T-matrix in the high- 
energy region, TI*= T,, (which is equivalent to unitarity, T+ = T-’, characteristic of 
the scattering matrix), is only approximate. It is violated most strongly on the phase 
c u r m  (as compared to anti-Stokes lines), and for lower levels. All T-matrices 
satisfying the equality (4), Q(E) =0, can be obtained if to move the ‘matching point’ 
’In particular, it falls in some wordinate systems into hvo parts for motion ‘forward‘ and ‘back’, in wntrast 
to the ‘right’ and ‘left’ parts in the case of deep levels in the double-well potential (d section 3). 
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(that is the initial and h a 1  points of the contour) along the 'matching' line. But really, 
no numerical matching is needed all matchings were performed analytically, the 
quantization condition being the result. 

Most of our levels are coincident with those from [ZS]  and [29] within the quoted 
precision, figure 4. Except the 26th level from [B] (perhaps misprinted), appreciable 
discrepancies appear at larger values of coupling parameter, where the differences 
sB1 -Sa, are the largest and other methods fall down in precision [28]. Certainly, the 
difficulties in our method also rise with the increase of limits of integration in the 
equation for the T-matrix. Nevertheless, a guaranteed accuracy of at least lo-'* at 
sB1 - Sa,- 102 (i.e. at about 30 levels below the bottom of the upper adiabatic term [9])  
is possible for the elements of the T-matrix and the energy levels in calculations with 
16-byte complex numbers (about IO3 steps of the Runge-Kutta procedure with local 
precision is needed). In particular, we have easily computed the exact energy 
levels E= 1 ( D  = 1.5) and E = - 0.5 ( D  = 2) from [35] lying on Judd's base l i e  [36] 
correct to 13 decimal figures. Attention was also paid to the last part of table 1 from 
[35] (D  =2.1-2.5), where the largest errors in the level positions should be expected. 
Nevertheless, only sparse discrepancies with our results in the 8th decimal place were 
found (except for the few evident misprints, the following two being the most 
obvious). 

Besides (25), the following equations were used (s=q2-wz,  W = K q + E ) :  

- W +  912, -Z112F 
2,: dq s ( 21nF(W-q/2)/~,  -W+2F2/~+3q /2  ) T=O (42) 

g 0.00 

fully equivalent to (33), and 

-F2/S- 912, -21r2F ) T=O 2"2F(W-q/2) /~ ,  F21s+q12 

... 

(43) 

obtained after eliminating the mean term. The contour of integration should circum- 
vent the two left poles (of figures 2 and 3 )  (in the generzl case, the Laplace transforms 
of (29) possess five regular singular points). Besides that, equations (2.15 and 16) of 
[NI (or equation (3 )  and (4)  of [25]) in the coherent states representation (and valid 

0.10 

0.05 
(b )  
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Table 1. 

Level, [35],table 1: D=Z.l, n = 5  D=22, n=Z3 

1351 . 0.44653700 3.34236908 
Present value' 0.44563700 3.24326908 

also for the three-dimensional pseudo-Jahn-Teller problem) were used. For con- 
venience, they can be rewritten as 

d T  -(&- 6 + 2)2, xz(z + E + 6 + j +  1) 
-+ dz Z(Z - 2) ( X ( Z  + E - 6), - (E  + S)Z - x ~ ( z  + j +  1) ) T=O (44) 

where 
a=' 4 j =  K-i  E = ( E -  K -  1)/2 x = FI2 

in terms of our parameters, or (after.excluding the mean term) 

These equations should be integrated along any contour circumventing the two poles3. 
Equations (42) and (44) result in the complex quantization condition (27a), 

whereas (43) and (45) lead to the real quantization function (276). Because (42)-(45) 
are single-valued in the complex plane, calculations are extremely simple. It is 
sufficient to perform integrations either in the upper, or in the lower half-plane only. 

0 1 2 
F 

Figures. Pattern of energy levels (dotted) in the three-dimensional Jahn-Teller system 
described by radial equations (29) with A=+, w =  1, A =  A=O, K = j + + = 3 ,  V =  F. Solid 
lines: the bottom of upper (&=O) and lower (Sa,=O) adiabatic terms; dashed line 
corresponds to 9=0. Full circles: energy levels from [35]. Open circles: quasiclassical 
interpretation of the false energy levels, see the text. 

'Just this same character of singularities (i.e. the two poles and irregular singular point in infinity) possess 
the Bessel transforms of (73) with A=% and w+ = U-, which can be obtained combining the approaches of 
[I and [SI. Besides the 'circle-like' contours, 'eight-like' conturs are also possible. The two types of contour 
correspond to double degeneration of the energy levels in the simplest Jahn-Teller problem. 
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Figure6. Quantization function (4). (27b; c) (reduced to unity interval). ?be parameters 
(D=2.5,j=2.5)sameasinthelastcolumnofdata[35]infig~gure5.Fullcircles:thezerosof 
Q corresponding to 'vue' levels kom (351; Arrows: false levels. Dashed line indicates the 
bottom of upper adiabatic term. 

The full T-matrix can be reconstructed by use of symmetry properties (the reversibd- 
ity in time for the case of (42)-(45)). 

The full pattern of energy levels is shown in figure 5, and in figure 6 typical 
example of the real quantization function is presented. Unfortunately, besides the 
familiar pattern of the 'true' energy levels [7,37], all the quantization forms possess 
non-physical solutions, described qualitatively by (3b) with 93 = (1 + exp(m))-' and 
~=6-slnlGl+argT(1/2+6),6=~/n(cf[9]).  That is, theexactquantizationforms 
reveal obviously quasiclassical properties. 

False levels can be recognized easily on diagrams like figure 5: they are approxima- 
tely parallel to the bottom of the upper adiabatic term, but the most straightforward 
way is to compute the eigenfunctions. Those corresponding to false levels are 
extremely depressed (see figure 7 where the overlap integrals 
{Y~Y)={Y~~Yl)+(Y~[Y~),  Y 1 . ~ = Y + i Y -  were obtained immediately from (32) by 
use of (31)). The weakening is larger as the precision of calculations becomes higher, 
suggesting that the 'false' eigenfunctions are really equal to zero. Practically, it is 
sufficient in most cases to compare the non-normalized wavefunctions (32) near the 
turning points. The normalized adiabatic wavefunctions in the coordinate represen- 
tation are shown in figure 8 and behave just as expected. 

1c -- 
I C  

N : 
i 

3 

Figure 7. The behaviour of normalization factors for 'true', 0-8, and 'false' eigenfunctions 
depending on the precision of calculation: 8E=1V2w (the largest circles) to 8E=10-6w. 
Parameters same as in figure 6. ~ ~ 
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P 
FigoreS. Adiabatic potential & N ~ S  and normaked wavefunctions in the lower and 
upper adiabatic terms (solid and dashed Lines, respectively; parameters same as in figures 6 
and 7). The seventh function reveals evident membership of thelowest vibrational state in 
the upper adiabatic term. 

6. Conclusion 

The proposed method is extremely simple for model problems and can be used for 
testing other computational approaches. In practical applications of the method in its 
present form, some complications arise compared with use of the asymptotic quantiza- 
tion forms (1)-(2) because intermediate iterations are needed to bring into conformity 
the parameters of potentials and independent actions. Besides that, some uncertainty 
exists in identification of the parameters (independent actions) of real and model 
systems. In particular, this is because the relation dl + &= d+ + d- between adiaba- 
tic and diabatic actions which takes place for all the models under consideration, is 
violated for arbitrarily chosen potentials etc. Nevertheless, an improvement of the 
earlier proposed approach [9] to the reconstruction of potential curves is possible by 
use of numerical T-matrices in the quantization conditions. Our preliminary estima- 
tions show that a mean square deviation in the energy level positions not worse than 

is achievable in practice (remember that a value of about 1 0 - l ~  corresponds to 
the initial approximation, whereas lO-’w provides a rather precise description of 
essentially coupled states [9]). Further progress is associated with the quantization 
form (27a) involving onIy the general characteristics of the T-matrix and seemingly 
applicable to more complicated problems which cannot be reduced to a pair of 
coupled first-order differential equations. 
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